Parure Bollywood Pas Cher

Similitudes Directes - Cours Maths Terminale - Tout Savoir Sur Les Similitudes Directes

Différence Entre Encastrable Et Intégrable
Maths: Nombres complexes et similitude directe du plan - cours et exemples corrigés - YouTube

Similitude Directe Et Nombre Complexe Pdf Format

6/ Déplacements Si une transformation f est un déplacement alors: f est soit une translation soit une rotation d'angle non nul. f déplacement est une similitude directe de rapport 1, donc f s'écrit: z' = az + b avec lal = 1 Et nous avons montré que: - si a = 1: alors f est la translation de vecteur d'affixe b. Et il est à remarquer que: - si b ≠ 0: f n'admet aucun point fixe. - si b = 0: f = Id et tout point du plan est fixe.. - si a ≠ 1: alors a s'écrit a = ei 0 avec 0 non nul car a ≠ 1. f admet alors un unique point fixe d'affixe f = r o h avec r = r (; 0) et h = h (; lal). Or: h = Id donc f = r. Dans ce cas là, f est donc une rotation d'angle non nul. Conséquence: Un déplacement admettant un point fixe est soit l'identité, soit une rotation d'angle non nul. En effet, d'après le listage fait lors de la démonstration du théorème: - soit f est un déplacement admettant un unique point fixe auquel cas il s'agit d'une rotation d'angle non nul. - soit f est un déplacement avec plus d'un point fixe auquel cas il s'agit de l'identité.

Similitude Directe Et Nombre Complexe Pdf Converter

Une similitude directe transformant A en A' et B en B' existe donc et est unique Remarques: - la démonstration de ce théorème fait souvent l'objet d'un R. O. C au BAC. - s a pour rapport: et pour angle - il est nécessaire d'avoir A ≠ B et A' ≠ B' mais il est possible d'avoir A = A' ou B = B' auquel cas, les points sont invariants par s. 5/ Forme réduite d'une similitude directe soit s similitude directe d'écriture complexe: z' = az + b avec a ≠ 0. - si a = 1: s est la translation de vecteur d'affixe b. (le vecteur n'a aucun rapport avec le vecteur de base. il s'agit seulement d'une notation) - si a ≠ 1: alors s admet un unique point invariant d'affixe: et s est la composée: - de l'homothétie de centre et de rapport lal (rapport de s) et - de la rotation de centre et d'angle: arg a (angle de s) est appelé le centre de la similitude directe. Et une écriture complexe de s est alors: - si lal = 1 et a ≠ 1, l'homothétie est l'identité et s est alors une simple rotation. - si arg a = 0 + 2k, la rotation est l'identité est s est alors une homothétie.

Similitude Directe Et Nombre Complexe Pdf 1

- les rotations d'angle 0 sont des similitudes d'angle 0. Réciproque: Si s est une similitude telle que: pour tous points distincts A et B du plan d'images respectives A' et B', l'angle est constant, alors s est une similitude directe. Démonstration: Soient A, B, C et D quatre points distincts du plan, d'images respectives A', B', C' et D'. Or, l'angle orienté entre un vecteur et son image est constant, s est une similitude qui conserve les angles orientés, elle est donc directe. 3/ Écriture complexe d'une similitude directe Le plan complexe est rapporté au repère orthonormé de sens direct Théorème: soit transformation du plan. Si f est une similitude directe de rapport k et d'angle 0 alors: alors f admet une écriture complexe de la forme: z' = az + b avec a = keio Soit f similitude directe de rapport k et d'angle 0. Il est à remarquer que si f a pour écriture: z' = az + b alors O a pour image O' d'affixe b. Appelons donc b l'affixe de O' image de O par f et soit M'(z') image de M(z) par f.

Rang d'une famille de vecteurs [ modifier | modifier le code] Pour une famille, son rang correspond au nombre maximal de vecteurs que peut contenir une sous-famille libre de cette famille. On peut aussi définir le rang d'une famille par:. Remarque: si est une famille de vecteurs indexée par les entiers de 1 à, alors le rang de est le rang de l'application linéaire où est le corps des scalaires. La raison est la suivante: est l'image de cette application linéaire. Propriétés [ modifier | modifier le code] Soient A, B et C des matrices. Inégalité de Frobenius: Démonstration Plus généralement, pour trois applications linéaires (entre espaces vectoriels de dimensions non nécessairement finies), et, on a car le morphisme canonique de dans induit par est surjectif. (Cas particulier) Inégalité de Sylvester: si a colonnes et a lignes, alors Théorème du rang: une application linéaire de dans, Matrice transposée et application transposée: et Produit de matrices et composition d'applications linéaires: et; en particulier — par composition à gauche ou à droite par l' identité — le rang d'une application linéaire de dans est inférieur ou égal à et à Addition:, avec égalité si, et seulement si, les images de et ne s'intersectent qu'en zéro et les images des transposées et ne s'intersectent qu'en zéro [ 1].

Thu, 01 Aug 2024 08:36:54 +0000