Parure Bollywood Pas Cher

Exercices - Séries Numériques - Étude Pratique : Corrigé ... - Bibmath

Velo Elliptique Xe50A

Voici l'énoncé d'un exercice qui a pour but de démontrer la règle de Raabe-Duhamel, qui est un critère permettant d'évaluer la convergence de séries. On va donc mettre cet exercice dans le chapitre des séries. C'est un exercice de fin de première année dans le supérieur.

Règle De Raabe Duhamel Exercice Corrigé Pdf

\frac{(-1)^n}{n^\alpha+(-1)^nn^\beta}, \ \alpha, \beta\in\mathbb R. Enoncé Pour $n\geq 1$, on pose $$u_n=\int_{n\pi}^{(n+1)\pi}\frac{\sin x}xdx. $$ \[ u_n=(-1)^n \int_0^\pi \frac{\sin t}{n\pi+t}dt. \] Démontrer alors que $\sum u_n$ est convergente. Démontrer que $|u_n|\geq \frac2{(n+1)\pi}$ pour tout $n\geq 1$. En déduire que $\sum_n u_n$ ne converge pas absolument. Enoncé Discuter la nature de la série de terme général $$u_n=\frac{a^n2^{\sqrt n}}{2^{\sqrt n}+b^n}, $$ où $a$ et $b$ sont deux nombres complexes, $a\neq 0$. Enoncé Suivant la position du point de coordonnées $(x, y)$ dans le plan, étudier la nature de la série de terme général $$u_n=\frac{x^n}{y^n+n}. Règle de raabe duhamel exercice corrigé 1. $$ Enoncé On fixe $\alpha>0$ et on pose $u_n=\sum_{p=n}^{+\infty}\frac{(-1)^p}{p^\alpha}$. Le but de l'exercice est démontrer que la série de terme général $u_n$ converge. Soit $n\geq 1$ fixé. On pose $$v_p=\frac{1}{(p+n)^\alpha}-\frac{1}{(p+n+1)^\alpha}. $$ Démontrer que la suite $(v_p)$ décroît vers 0. En déduire la convergence de $\sum_{p=0}^{+\infty}(-1)^pv_p$.

$$ Enoncé Montrer que la série de terme général $u_n=\frac{\cos(\ln n)}{n}$ est divergente. Enoncé Étudier les séries de terme général: $u_n=\sin(\pi e n! )$ et $v_n=\sin\left(\frac{\pi}{e}n! \right). $ $\displaystyle u_n=\frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n^\alpha}$, pour $\alpha\in\mtr. $ Comparaison à une intégrale Enoncé Suivant la valeur de $\alpha\in\mathbb R$, déterminer la nature de la série $\sum_n u_n$, où $$u_n=\frac{\sqrt 1+\sqrt 2+\dots+\sqrt n}{n^\alpha}. $$ Enoncé On souhaite étudier, suivant la valeur de $\alpha, \beta\in\mathbb R$, la convergence de la série de terme général $$u_n=\frac{1}{n^\alpha(\ln n)^\beta}. $$ Démontrer que la série converge si $\alpha>1$. Règle de Raabe-Duhamel | Etudier. Traiter le cas $\alpha<1$. On suppose que $\alpha=1$. On pose $T_n=\int_2^n \frac{dx}{x(\ln x)^\beta}$. Montrer si $\beta\leq 0$, alors la série de terme général $u_n$ est divergente. Montrer que si $\beta>1$, alors la suite $(T_n)$ est bornée, alors que si $\beta\leq 1$, la suite $(T_n)$ tend vers $+\infty$.

Thu, 01 Aug 2024 01:17:02 +0000