Parure Bollywood Pas Cher

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique

Sac De Secours

nombre | diviseurs et pgcd | Mersenne Fermat | Factorisation Mersenne Fermat Les différents types de nombres 1) Les nombres entiers Définition: Les entiers naturels sont les nombres entiers positifs. Exemples: 0; 1; 2; 12; 33; 2008 sont des entiers naturels. L'ensemble des nombres entiers naturels se note `NN`. Définition: Les entiers relatifs sont les nombres entiers positifs et négatifs. Exemples: - 2000; - 33; -1; 0; +1; +2; +33 sont des entiers relatifs. L'ensemble des nombres entiers relatifs se note: `ZZ` 2) Les nombres décimaux Définition: Les nombres décimaux sont les nombres qui peuvent s'écrire sous la forme d'un quotient d'un entier relatif par: `2^n × 5^m`. Ensemble des nombres entiers naturels n et notions en arithmétique le. Exemples: 0, 5; -1, 25; 2, 468 sont des nombres décimaux. 0, 5 = 1/2 -1, 25 = -5/4 2, 468 = ….. Remarque: tous les entiers sont des nombres décimaux. L'ensemble des nombres décimaux se note: `D` 3) Les nombres rationnels Définition: Les nombres rationnels sont les nombres qui peuvent s'écrire sous la forme d'un quotient de nombres entiers.

  1. Ensemble des nombres entiers naturels n et notions en arithmétique 2
  2. Ensemble des nombres entiers naturels n et notions en arithmétique le

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique 2

On sait que \(-56=7\times -8\). On a donc trouvé un entier relatif \(k\), en l'occurrence \(-8\), tel que \(a=bk\). \(-56\) est donc un multiple de \(7\). Pour s'entraîner… Soit \(a\) un entier relatif, \(m\) et \(n\) deux multiples de \(a\). Alors \(m+n\) est aussi un multiple de \(a\). Démonstration: On commence par traduire les hypothèses: \(m\) est un multiple de \(a\): il existe un entier relatif \(k\) tel que \(m=ka\). \(n\) est un multiple de \(a\): il existe un entier relatif \(k'\) (potentiellement différent de \(k\)) tel que \(n=k'a\). Ainsi, \(m+n=ka+k'a=(k+k')a\). Ensemble des nombres entiers naturels n et notions en arithmétique 2. Or, \(k+k'\) est la somme de deux entiers relatifs, c'est donc un entier relatif. Si on note \(k'^{\prime}=k+k'\), on a alors \(m+n=k'^{\prime}a\): \(m+n\) est donc un multiple de \(a\). Exemple: \(777\) est un multiple de \(7\). En effet, \(777 = 111 \times 7\). \(7777\) est également un multiple de \(7\). Ainsi, \(777 + 7777\) est également un multiple de \(7\). Pour s'entraîner sur cette partie du cours: Les exercices 1 à 7 de la fiche d'exercices Parité Soit \(a\in\mathbb{Z}\).

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique Le

\Collège\Troisième\Algébre\Arithmétique. 1. Diviseurs communs à deux entiers. PGCD. 1. 1. Diviseur d'un nombre entier naturel. 1. Rappels: Un nombre entier naturel est un nombre entier positif. Rappel sur la division euclidienne: Propriété: Soient a et b deux entiers naturels avec b non nul. Il existe un couple unique d'entiers (q, r) tels que: et tel que:. q est appelé le quotient de la division euclidienne de a par b et r le reste de la division euclidienne de a par b. Remarques: Si le reste de la division euclidienne d'un nombre entier a par un nombre entier d est nul, alors d est appelé un diviseur de a. Il existe alors un nombre entier k tel que a=kd. On dit aussi que a est un multiple de d. 1. 2. ENEN - Arithmétique - Tronc Commun. Rappels sur les critères de divisibilité: Propriété: Un nombre est divisible par: 2 si il se termine par 0; 2; 4; 6; 8. 3 si la somme de ses chiffres est un multiple de 3. 5 si il se termine par 0 ou 5. 9 si la somme de ses chiffres est un multiple de 9. 10; 100 … si il se termine par 0; 00 etc… 1.

$$ La relation "être congrue modulo $n$", qui est une relation d'équivalence, est compatible avec les opérations $+, \times$: \begin{array}l a\equiv b\ [n]\\ c\equiv d\ [n] \implies \left\{ a+c\equiv b+d\ [n]\\ a\times c\equiv b\times d\ [n] \end{array}\right. Petit théorème de Fermat: Si $p$ est un nombre premier et $a\in \mathbb Z$, alors $a^{p}\equiv a\ [p]$. De plus, si $p$ ne divise pas $a$, alors $a^{p-1}\equiv 1\ [p]$. Ensemble des nombres entiers naturels n et notions en arithmétique 1. Arithmétique et sous-groupes de $\mathbb Z$ Théorème: Les sous-groupes de $\mathbb Z$ sont les $n\mathbb Z$, avec $n\in\mathbb N$. Soit $a, b$ deux entiers tels que $(a, b)\neq (0, 0)$. Alors $a\mathbb Z+b\mathbb Z$ et $a\mathbb Z\cap b\mathbb Z$ sont deux sous-groupes de $\mathbb Z$. Soit $d, m\in\mathbb N$ tels que \begin{align*} a\mathbb Z+b\mathbb Z&=d\mathbb Z\\ a\mathbb Z\cap b\mathbb Z&=m\mathbb Z. \end{align*} Alors $d=a\wedge b$ et $m=a\vee b$. Le théorème précédent contient en particulier la moitié du théorème de Bézout: si $a\wedge b=1$, alors $a\mathbb Z+b\mathbb Z=\mathbb Z$, et donc il existe $(u, v)\in\mathbb Z^2$ avec $au+bv=1$.

Thu, 01 Aug 2024 01:12:14 +0000