Parure Bollywood Pas Cher

2008, Bac Amérique Du Nord Corrigé. Ce Document (Bac, Sujets) Est Destiné Aux Terminale S

Cle Appartement Perdu

Filière du bac: S Epreuve: Mathématiques Spécialité Niveau d'études: Terminale Année: 2008 Session: Normale Centre d'examen: Amérique du Nord Calculatrice: Interdite Extrait de l'annale: Géométrie complexe, similitudes complexe, étude de fonction et tangente, convergence de suites d'intégrales. Télécharger les PDF: Sujet officiel complet (3 865 ko) Code repère: 08 MASSAN 1 Corrigé complet (77 ko)

  1. Corrigé bac maths amérique du nord 2008 video
  2. Corrigé bac maths amérique du nord 2008 de
  3. Corrigé bac maths amérique du nord 2008 r2
  4. Corrigé bac maths amérique du nord 2008 available

Corrigé Bac Maths Amérique Du Nord 2008 Video

correction de l'exercice 1: commun à tous les candidats Pour chacune des questions, une seule des réponses A, B ou C est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée. Barème: pour chaque question, une réponse exacte rapporte 1 point; une réponse inexacte enlève 0, 25 point; l'absence de réponse n'apporte, ni n'enlève de point. Corrigé bac maths amérique du nord 2008 video. Si la somme des points de cet exercice est négative, la note est ramenée à 0. Les deux parties sont indépendantes première partie Dans cette partie, on considère la courbe représentative d'une fonction f définie et dérivable sur l'intervalle [ - 1; 5] (voir ci-dessous). On note f ′ la dérivée de la fonction f. On peut affirmer que Le nombre dérivé f ′ ⁡ ( a) est égal au coefficient directeur de la tangente à la courbe représentative de la fonction f au point d'abscisse a. Or aux points d'abscisse 0 et 3, la courbe admet respectivement une tangente parallèle à l'axe des abscisses donc f ′ ⁡ ( 0) = 0 et f ′ ⁡ ( 3) = 0. réponse A: f ′ ⁡ ( 4, 5) = 0 réponse B: f ′ ⁡ ( 3) = 0 réponse C: f ′ ⁡ ( 3) = 4, 5 Soit F une primitive sur l'intervalle [ - 1; 5] de la fonction f.

Corrigé Bac Maths Amérique Du Nord 2008 De

Pour les enseignants... Des supports de cours, des exemples de devoirs surveillés, et un moyen pratique de distribuer ses corrigés à ses élèves! Pour les élèves Des devoirs corrigés, annales de bac, sujets d'oraux... Et des fonctionnalités régulièrement mises à jour...

Corrigé Bac Maths Amérique Du Nord 2008 R2

Exercice 3 (6 points) Commun à tous les candidats Soit f f la fonction définie sur l'intervalle] 1; + ∞ [ \left]1; +\infty \right[ par f ( x) = ln x − 1 ln x f\left(x\right)=\ln x - \frac{1}{\ln x}. On nomme ( C) \left(C\right) la courbe représentative de f f et Γ \Gamma la courbe d'équation y = ln x y=\ln x dans un repère orthogonal ( O; i ⃗, j ⃗) \left(O; \vec{i}, \vec{j}\right). Etudier les variations de la fonction f f et préciser les limites en 1 1 et en + ∞ +\infty. Corrigé bac maths amérique du nord 2008 de. Déterminer lim x → + ∞ [ f ( x) − ln x] \lim\limits_{x \rightarrow +\infty}\left[f\left(x\right) - \ln x\right]. Interpréter graphiquement cette limite. Préciser les positions relatives de ( C) \left(C\right) et de Γ \Gamma. On se propose de chercher les tangentes à la courbes ( C) \left(C\right) passant par le point O O. Soit a a un réel appartenant à l'intervalle] 1; + ∞ [ \left]1; +\infty \right[. Démontrer que la tangente T a T_{a} à ( C) \left(C\right) au point d'abscisse a passe par l'origine du repère si et seulement si f ( a) − a f ′ ( a) = 0 f\left(a\right) - a f^{\prime}\left(a\right)=0.

Corrigé Bac Maths Amérique Du Nord 2008 Available

f ( x) > 3 f\left(x\right) > 3 pour tout x x de] − 2; + ∞ [ \left] - 2; +\infty \right[. f ′ ( − 1) = − 1 f^{\prime} \left( - 1\right)= - 1 La fonction g g définie sur] − 2; + ∞ [ \left] - 2; +\infty \right[ par g ( x) = ln [ f ( x)] g\left(x\right)=\ln\left[f\left(x\right)\right] est décroissante.

Si x > − 2 x > - 2: x + 2 > 0 x+2 > 0 donc 1 x + 2 > 0 \frac{1}{x+2} > 0 donc 1 x + 2 > 0 \frac{1}{x+2} > 0 donc 3 + 1 x + 2 > 3 3+\frac{1}{x+2} > 3 f ′ ( − 1) = − 1 f^{\prime}\left( - 1\right)= - 1 f ′ ( x) = − 1 ( x + 2) 2 f^{\prime}\left(x\right)= - \frac{1}{\left(x+2\right)^{2}} donc La fonction g g définie sur]-2; + ∞ \infty [ par g ( x) = ln [ f ( x)] g\left(x\right)=\ln\left[f\left(x\right)\right] est décroissante. f ′ ( x) = − 1 ( x + 2) 2 < 0 f^{\prime}\left(x\right)= - \frac{1}{\left(x+2\right)^{2}} < 0 g g est la composée de la fonction f f décroissante sur] − 2; + ∞ [ \left] - 2;+\infty \right[ et à valeurs strictement positives, et de la fonction ln \ln croissante sur] 0; + ∞ [ \left]0;+\infty \right[ donc g g est décroissante sur] − 2; + ∞ [ \left] - 2;+\infty \right[ Autres exercices de ce sujet:

Pour la question 4, y = mx représente la droite de coefficient directeur m passant par O. Il est clair que si m est trop grand, la droite ne coupera jamais C. Une première intersection se produira lorsque la droite sera confondue avec T a. Sachant que T a a pour équation y = f'(a)x, on en déduit que la première valeur de m à considérer sera m = f'(a). Ainsi, lorsque m > f'(a), la pente sera trop élevée et il n'y aura pas d'intersection. Ensuite, pour m = f'(a), il y aura une intersection. Le second seuil se produira pour le point d'abscisse x = 10. En effet, au delà, la droite d'équation y = mx ne coupera plus qu'une seule fois la courbe C. La droite passant par le point d'abscisse x = 10 aura pour coefficient directeur f(10)/10 et donc l'équation sera y = (f(10)/10)x. Annale et corrigé de Mathématiques Spécialité (Amérique du Nord) en 2008 au bac S. On peut donc en déduire que pour f(10)/10 m < a, il y aura deux intersections et que pour m < f(10)/10 il n'y en aura plus qu'une.

Thu, 11 Jul 2024 12:59:05 +0000