Parure Bollywood Pas Cher

Cours De Quatrième Sur Les Fonctions

Appartement À Vendre Arcachon Front De Mer
Cours sur les généralités en 2de sur les fonction numériques et les fonctions usuelles. Dans cette leçon en seconde, nous étudierons les fonctions carrée, affine, linéaire, inverse et racine carrée. I. Fonctions affines 1. Définition Définition: Soient a et b deux réels donnés. Lorsque à chaque réel x, on associe le réel ax + b, on définit une fonction affine f et on note ou la fonction f définie par. Exemple: Les fonctions f et g respectivement définies sur par f(x) = 3x + 5 et g(x) = 2x – 7 sont des fonctions affines. Remarque: · Lorsque b = 0, la fonction est dite linéaire, comme par exemple, f(x) = -3x. · Lorsque a = 0, la fonction est dite constante, comme par exemple, f(x) = 3, pour tout réel x. présentation graphique d'une fonction affine: Dans un repère, la représentation graphique d'une fonction affine est une droite. On dit que cette droite a pour équation y = ax + b et que a est son coefficient directeur, b son ordonnée à l'origine. Leçon généralités sur les fonctions numeriques 1 bac. Cette droite passe par le point P(0; b). Conséquences: · Dans le cas d'une fonction linéaire, la droite d'équation y = ax passe par l'origine du repère.
  1. Leçon généralités sur les fonctions affines
  2. Leçon généralités sur les fonctions 3eme

Leçon Généralités Sur Les Fonctions Affines

BOUTIQUE POINTS DE VENTE CONTACT AIDE Panier Votre panier est vide.

Leçon Généralités Sur Les Fonctions 3Eme

V. La fonction inverse Il s'agit de la fonction g définie sur =] –; 0[ ∪]0; + [ par. 1. Tracé point par point de la courbe représentative de g On peut alors tracer la courbe représentative de g. La courbe représentative de g s'appelle une hyperbole. 2. Etude de la parité de g Propriété: Soit alors. Comparer g(x) et g(-x):. On dit que g est une fonction impaire. Graphiquement, cela signifie que les points et qui sont des points de la courbe représentative de g sont symétriques par rapport à l'origine du repère. Leçon généralités sur les fonctions 3eme. La représentation graphique de g admet donc l'origine du repère pour centre de symétrie. 3. sens de variation de g D'après le graphique, on peut établir le tableau de variation de g. si a et b sont deux réels non nuls tels que a < b. Si a et b sont strictement positifs, ab > 0 et comme b – a > 0, on déduit que g(a) – g(b) > 0 Donc g est strictement décroissante sur]0; + [. Si a et b sont strictement négatifs, ab < 0 et comme b – a > 0, on déduit que g(a) – g(b) > 0 Donc g est strictement décroissante sur]-; 0[.

L'image est proportionnelle à la variable. · Dans le cas d'une fonction constante, la droite d'équation y = b est parallèle à l'axe des abscisses. L'image est constamment égale à b. II. fonctions affines et taux de variation Théorème: Soit f une fonction affine définie par f(x) = ax + b. Alors, pour tous u et v tels que,. Ce rapport est appelé taux de variation de f entre u et v; il traduit la proportionnalité des écarts des images de la fonction par rapport aux variables. Exercice: Dans un repère, les points A et B ont pour coordonnées (-4; -1) et (2; 2). Leçon généralités sur les fonctions affines. Quelle est la fonction affine représentée par la droite (AB)? Deux méthodes sont demandées. III. Sens de variation d'une fonction affine Soit une fonction affine. Si a > 0 alors f est croissante sur. Si a = 0 alors f est constante sur. Si a < 0 alors f est décroissante sur. Démonstration: Soient u et v deux nombres réels tels que u < v. f(u) – f(v) = au + b – (av + b) = a(u – v) Si a est positif, alors a > 0 et comme u – v < 0, on déduit que f(u) – f(v) < 0 puis f(u) < f(v) Donc f est strictement croissante sur [0; + [.

Wed, 31 Jul 2024 09:05:43 +0000